Lesson 18. Comparing Two Regression Lines - Part 1

1 Overview

- So far, we have worked with multiple linear regression models when all predictors are quantitative
- This lesson: multiple linear regression models with a categorical predictor
- By including a categorical predictor in our model, we can make comparisons between groups and make better predictions

2 Using one model to fit two lines with different intercepts

- Suppose we want to predict the quantitative variable Y based on a quantitative variable X
- We also have a categorical variable that divides our observations into two groups, A and B
- We code the categorical variable as an indicator variable:

$$
\text { Group } B= \begin{cases}1 & \text { if observation is in Group B } \\ 0 & \text { otherwise }\end{cases}
$$

- The model is:

$$
Y=\beta_{0}+\beta_{1} X+\beta_{2} \operatorname{Group} B+\varepsilon \quad \varepsilon \sim \operatorname{iid} N\left(0, \sigma_{\varepsilon}^{2}\right)
$$

- For observations in group A, the model reduces to:
- For observations in group B, the model reduces to:
- Coefficients:
- β_{0} :
- β_{1} :
- β_{2} :
$\Rightarrow \beta_{2}$ represents the difference in the magnitude of Y due to membership in group B versus group A Switch to Part 2 for an example...

3 Using one model to fit two lines with different intercepts AND different slopes

- Same setup as before:
- We want to predict the quantitative variable Y based on a quantitative variable X
- We also have a categorical variable that divides our observations into two groups, A and B
- Now, we still code the categorical predictor as an indicator variable:

$$
\text { GroupB }= \begin{cases}1 & \text { if in Group B } \\ 0 & \text { otherwise }\end{cases}
$$

- We also include an interaction term as a predictor:

$$
X \times \text { Group } B
$$

- This term multiplies two predictors together
- This allows the slopes to be different for each level of the binary categorical variable
- The full model is:

$$
Y=\beta_{0}+\beta_{1} X+\beta_{2} \operatorname{Group} B+\beta_{3}(X \times \operatorname{Group} B)+\varepsilon \quad \varepsilon \sim \operatorname{iid} N\left(0, \sigma_{\varepsilon}^{2}\right)
$$

- For observations in group A , this reduces to:
\square
- For observations in group B, this reduces to:
- Coefficients:
- β_{0} :
- β_{1} :
- β_{2} :
- β_{3} :
$\Rightarrow \beta_{3}$ represents the difference in the rate of change in Y vs. X due to membership in group B versus group A

Switch to Part 2 for an example...

